Am trying to valid a research work done by kuiken(1968)
where we have this two eauations:
restart;
Digits := 35;
with(ODETools);
with(student);
with(plots);
inf := 4;
equ1 := diff(f[0](eta), `$`(eta, 3))+theta[0](eta);
equ2 := diff(theta[0](eta), `$`(eta, 2))+3*f[0](eta)*(diff(theta[0](eta), eta));
Bcs1 := f[0](0) = 0, (D(f[0]))(0) = 0, theta[0](0) = 1, theta[0](inf) = 0, (D(D(f[0])))(inf) = 0;
S1 := dsolve({Bcs1, equ1, equ2}, {f[0](eta), theta[0](eta)}, type = numeric, method = bvp[midrich]);
proc(x_bvp) ... end;
S1(0);
[ d
[eta = 0., f[0](eta) = 0., ----- f[0](eta) = 0.,
[ deta
d / d \
----- |----- f[0](eta)| = 0.82449782146165697398999365896678734,
deta \ deta /
theta[0](eta) = 1.0000000000000000000000000000000000,
d ]
----- theta[0](eta) = -0.71098574970825563256340736114251047]
deta ]
S1(inf);
[
[eta = 4., f[0](eta) = 1.7815670728545914261072119522795076,
[
d
----- f[0](eta) = 0.51061876174095320088291844433043562,
deta
d / d \
----- |----- f[0](eta)| = 0., theta[0](eta) = 0.,
deta \ deta /
d
----- theta[0](eta) = -0.000054818176138173095945902421930470836
deta
]
]
]
Pls, I need to find the function of the limit of f[0](eta) at eta tend to infinity. checked equation 45 of the attached document and for the two equation pls checked equation 36 and 37 for the ODE equation solved above.