Quantcast
Channel: MaplePrimes - Questions and Posts tagged with solve
Viewing all articles
Browse latest Browse all 1087

ROOT QUAGMIRE between solve vs RootFinding:-Analytic

$
0
0

I originally posted this question @ Reconciling roots of a series  However, I got no responses.  I have done further work on the problem & attempted to delete my original posting to initiate this one.    I did not see the option to delete Reconciling roots of a series.  So if any website moderator can delete the original & leave this one stand that would be helpful.  The results in this posting are more illuminating.

I have an infinite series that is function of


                                   /2 Pi k x\
                               sin|--------|
                                     \   T    / where k is the frequency parameter that is an integer value from 1 to m.  The series is also linearly dependent on the coefficient, Ck.  However, Ck is nonlinear with respect to k.  3 other parameters are undefined, a0, N, & tau.  Taking the derivative of the series removes the constant a0 & the factor (2 Pi k)/T comes out of the sin term & the sin term bcomes a cos term.  N is a positive integer & tau is a real #, generally between 0 & 1.

The derivative of the series can be evaluated since Ck falls of by 1/k^2 which renders the factor (2 Pi k)/T to (2 Pi)/T.  All is well & MAPLE seems to confirm that by the result (5).  I then attempt to find the roots of the derivative after defining the values for m, a0, N, & tau with both the solveRootFinding:-Analytic commands.  The results from the 2 do not seem to coincide.

I then repeat the process with chek2.  Now there seems to be some overlap in the results.  But as I pointed out in Reconciling roots of a series in the case of chek the series parameters m, a0, N, & tau have not been assigned values.  In the case of chek2 those parameters do have assigned values; hence, the solution characteristics are different for the solve command, but not for RootFinding:-Analytic.

In a different problem, but somewhat related someone pointed out the superior computational performance of the RootFinding:-Analytic as opposed to the solve command.  The results here if I interpret them correctly suggest that the solve command can be WRONG altogether.  Can this be explained in a concise & coherent manner that most users can follow?  Also, solve can produce an analytic expression as opposed the RootFinding:-Analytic command.  Is there a way to use the RootFinding package to produce an analytical result?  In the case presented below I suppose the analytic result for solutions to chek would be JUNK?

reconcile_solns.mw


Viewing all articles
Browse latest Browse all 1087

Trending Articles