Quantcast
Viewing all articles
Browse latest Browse all 1087

How do I solve a system of equations in maple?

Hi

How can i solve this system of equations:
Image may be NSFW.
Clik here to view.
{c*(N-k)*(1-exp(-p)) = p, -d*((k-N)*exp(-p)-k) = N, 0 < N, 0 < p, 1 < c, 1 < d, 1 < k}

N and P are variables and the others are constant numbers.

I used "solve" function but the results are:
Image may be NSFW.
Clik here to view.
piecewise(And(1 < c, 1 < d, 1 < k, 0 < -RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z)*d/((d-1)*c), 0 < -RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z)), [{N = d*k*(exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1)/(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1), p = c*k*(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-d-exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))+1)/(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1)}], [])

piecewise(And(1 < c, 1 < d, 1 < k, 0 < -RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z)*d/((d-1)*c), 0 < -RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z)), [{N = d*k*(exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1)/(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1), p = c*k*(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-d-exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))+1)/(d*exp(RootOf(exp(_Z)*c*d*k+exp(_Z)*_Z*d-exp(_Z)*c*k-c*d*k+c*k-_Z))-1)}], [])

 

 

 


Viewing all articles
Browse latest Browse all 1087

Trending Articles